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Abstract

We extend the class of M -tests for a unit root analyzed by Perron and Ng (Rev. Econ.
Studies 63 (1996) 435) and Ng and Perron (Econometrica 69 (2001) 1519) to the case where a
change in the trend function is allowed to occur at an unknown time. These tests (MGLS) adopt
the GLS detrending approach developed by Elliott et al. (Econometrica 64 (1996) 813) (ERS)
following the results of Dufour and King (J. Econometrics 47 (1991) 115). Following Perron
(Econometrica 57 (1989) 1361), we consider two models: one allowing for a change in slope
and the other for both a change in intercept and slope. We derive the asymptotic distributions
of the tests as well as that of the feasible point optimal test (PGLS

T ) suggested by ERS. Also,
we compute the non-centrality parameter used for the local GLS detrending that permits the test
PGLS

T to have 50% asymptotic power at that value. The asymptotic critical values of the tests
are tabulated. We show that the MGLS and PGLS

T tests have an asymptotic power function close
to the power envelope. A simulation study analyzes the size and power in =nite samples under
various methods to select the truncation lag for the autoregressive spectral density estimator. An
empirical application is also provided.
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1. Introduction

Since the seminal paper of Nelson and Plosser (1982), the unit root hypothesis
has received a lot of attention from both theoretical and empirical perspectives (e.g.,
Campbell and Perron (1991) and Stock (1994) for surveys). Using tests developed by
Dickey and Fuller (1979), Nelson and Plosser (1982) argued that current shocks have
permanent eDects on the level of most macroeconomic series. This =nding was sup-
ported by other approaches which found that a typical shock has both important tran-
sitory and permanent components (see, e.g., Campbell and Mankiw, 1987a, b; Shapiro
and Watson, 1988; Clark, 1987; Cochrane, 1988).
In contrast to this literature, Perron (1989) argued, as an alternative to the unit root

hypothesis, that macroeconomic Iuctuations are most likely stationary if allowance is
made for the trend function to exhibit occasional changes. Allowing for a single change
in intercept and/or slope, he rejected the unit root hypothesis for 11 of the 14 series
analyzed by Nelson and Plosser. As discussed in Banerjee et al. (1992) this =nding
may be important for the following reasons. First, it oDers an alternative picture of the
persistence in macroeconomics series. Second, this approach can provide a parsimonious
model for a slowly changing trend component that may be useful as a data description.
Third, the implications for inference in more complex models are very diDerent.
Christiano (1992) criticized the results of Perron (1989) on the basis that the break

points should not be treated as exogenous since the imposition of a given break date
involves an issue of data mining. Accordingly, Zivot and Andrews (1992), Banerjee
et al. (1992) and Perron (1997) considered unit root tests with unknown break points.
We continue to treat the potential break points as occurring at unknown times and

contribute to this literature in two ways. First, we use the MGLS tests analyzed by
Perron and Ng (1996) and extend them to permit a one time change in the trend
function. Second, following Elliott et al. (1996) (hereafter ERS) and the prior work
of Dufour and King (1991), we use local to unity GLS detrending of the data. We
consider two speci=c models: one with a break in the slope of the trend function and
one with a break in both the intercept and slope. In this setup, there is no need to
analyze the case where only a change in the intercept is allowed since the tests then
have the same asymptotic distribution as the case where the deterministic components
include a constant and a time trend which was analyzed in ERS (since a change in
intercept is a special case of what they refer to as a “slowly evolving deterministic
component”).
The reasons for considering the M-tests, originally proposed by Stock (1999) and

further analyzed by Perron and Ng (1996) is that these tests have much smaller size
distortions than other classes of unit root tests when the errors have strong negative
serial correlation. Also, using GLS detrending when constructing the M-tests allows
substantial gains in power as showed by Ng and Perron (2001), similar to the DFGLS

test proposed by ERS.
Given that a uniformly most powerful test is not attainable, we follow ERS and

derive a feasible point optimal test (PGLS
T ). The asymptotic power function of this

test is derived and we use the associated power envelope to choose the non-centrality
parameter ( Nc) to perform the GLS detrending such that the asymptotic power of the
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test is 50% against the local alternative N� = 1 + Nc=T . For our two models, we obtain
Nc =−22:5.
The rest of the paper is organized as follows. The model and some preliminary

theoretical results are presented in Section 2. In Section 3, we derive the asymptotic
distribution of the MGLS and DFGLS tests in both cases where the break point is known
or unknown. Section 4 considers the asymptotic Gaussian power envelope and the limit
distribution of the feasible point optimal test. The asymptotic critical values and the
asymptotic power function of the various tests are presented in Section 5. Section 6
considers the size and power of the tests in =nite samples using simulations. Section 7
presents an empirical application and Section 8 brieIy concludes. An appendix contains
technical derivations.

2. GLS detrending with structural change

The data generating process considered is of the form:

yt = dt + ut ; t = 0; : : : ; T; (1)

ut = �ut−1 + vt ; (2)

where {vt} is an unobserved stationary mean-zero process. We use the assumption that
u0 = 0 throughout, though the results generally hold for the weaker requirement that
E(u20)¡∞. The noise function is vt =

∑∞
i=0 �i�t−i with

∑∞
i=0 i|�i|¡∞ and where

{�t} is a martingale diDerence sequence. The process vt has a non-normalized spectral
density at frequency zero given by �2 =�2��(1)

2, where �2�=limT→∞ T−1 ∑∞
t=1 E(�2t ).

Furthermore, T−1=2 ∑[rT ]
t=1 vt ⇒ �W (r), where ⇒ denotes weak convergence in dis-

tribution and W (r) is the Wiener process de=ned on C[0; 1] the space of continuous
functions on the interval [0; 1]. In (1), dt =  ′zt , where zt is a set of deterministic
components to be discussed below. For any series yt , with deterministic components
zt , we de=ne the transformed data y N�

t and z N�t by

y N�
t = (y0; (1− N�L)yt); z N�t = (z0; (1− N�L)zt); t = 0; : : : ; T:

We let  ̂ be the estimate that minimizes

S∗( ; N�; �) =
T∑

t=0

(y N�
t −  ′z N�t )

2 (3)

and denote the minimized value by S( N�; �).

2.1. The speci2cations of the deterministic components

Model I. Structural change in the slope: For this model, the set of deterministic
components, zt in (1), is given by

zt = {1; t; 1(t ¿TB)(t − TB)}; (4)
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where 1(:) is the indicator function and TB is the time of the change. Without loss of
generality, we assume that TB=T� for some �∈ (0; 1). In this case,  ̂ (�)=( ̂1; !̂1; !̂2)′

is the vector of estimates that minimizes (3).
Model II. Structural change in intercept and slope: For Model II,

zt = {1; 1(t ¿TB); t; 1(t ¿TB)(t − TB)}: (5)

In this case, the vector of coe$cient estimates is  ̂ (�)=( ̂1;  ̂2; !̂1; !̂2)′. In this model,
we have the same results as with Model 1 since the eDect of  ̂2 −  2 is negligible in
large samples. This is because the change in intercept is a special case of a slowly
evolving deterministic component in condition B of ERS.

3. The tests and their asymptotic distributions

3.1. The tests

The M-tests, originally proposed by Stock (1999), and further analyzed by Perron
and Ng (1996), exploit the feature that a series converges with diDerent rates of nor-
malization under the null and the alternative hypotheses. They are de=ned by

MZGLS
� (�) = (T−1ỹ2T − s2)

(
2T−2

T∑
t=1

ỹ2t−1

)−1

; (6)

MSBGLS(�) =

(
T−2

T∑
t=1

ỹ2t−1=s
2

)1=2
; (7)

MZGLS
t (�) = (T−1ỹ2T − s2)

(
4s2T−2

T∑
t=1

ỹ2t−1

)−1=2

(8)

with ỹ t = yt −  ̂
′
zt where  ̂ minimizes (3). The term s2 is the autoregressive estimate

of the spectral density at frequency zero of vt , de=ned as

s2 = s2ek =(1− b̂(1))2; (9)

with s2ek = (T − k)−1 ∑T
t=k+1 ê2tk , b̂(1) =

∑k
j=1 b̂j, and b̂j, {ê tk} obtained from the

regression (see Perron and Ng (1998) for more details):

Vỹ t = b0ỹ t−1 +
k∑

j=1

bjVỹ t−j + etk : (10)

The =rst statistic is a modi=ed version of the Phillips and Perron (1988) Z� test
originally developed by Phillips (1987). The second statistic is a modi=ed version of
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Bhargava’s (1986) R1 statistic which builds upon the work of Sargan and Bhargava
(1983). The third statistic is a modi=ed version of the Phillips and Perron (1988) Zt

test. As Perron and Ng (1996) showed, the MSB and Z� tests are related by Zt ≈
MSB × Z�. This relation suggests the MZt test de=ned by (8) since it satis=es the
relation MZt =MSB×MZ�. Another test of interest is the so-called ADF test which is
the t-statistic for testing b0=0 in the regression (10), see Dickey and Fuller (1979) and
Said
and Dickey (1984). We denote this test by ADFGLS(�). Our approach is an exten-
sion of Ng and Perron (2001) and Elliott et al. (1996) to the case where the trend
function contains a structural change. In this case, the MGLS tests will depend on the
unknown break point �.

3.2. Asymptotic distributions of the tests

We start with a statement of the limiting distribution of the various tests in the case
where the break point is considered known.

Theorem 1. Let yt be generated by (1) with �=1+c=T , MZGLS
� ;MSBGLS and MZGLS

t be
de2ned by (6)–(8) with data obtained from local GLS detrending (ỹ t) at N�=1+ Nc=T ,
and ADFGLS be the t-statistic for testing b0 = 0 in the regression (10). Also, s2 is a
consistent estimate of �2. For Models I and II, we have

MZGLS
� (�) ⇒ 0:5K1(c; Nc; �)

K2(c; Nc; �)
≡ HMZGLS

� (c; Nc; �);

MSBGLS
� (�) ⇒ (K2(c; Nc; �))1=2 ≡ HMSBGLS

(c; Nc; �);

MZGLS
t (�) ⇒ 0:5K1(c; Nc; �)

(K2(c; Nc; �))1=2
≡ HMZGLS

t (c; Nc; �);

ADFGLS(�) ⇒ 0:5K1(c; Nc; �)
(K2(c; Nc; �))1=2

≡ HADFGLS
(c; Nc; �);

where

K1(c; Nc; �) = V (1)
c Nc (1; �)

2 − 2V (2)
c Nc (1; �)− 1;

K2(c; Nc; �) =
∫ 1

0
V (1)
c Nc (r; �)

2 dr − 2
∫ 1

�
V (2)
c Nc (r; �) dr;

and V (1)
c Nc (r; �) =Wc(r)− rb3, V

(2)
c Nc (r; �) = b4(r − �)[Wc(r)− rb3 − (1=2)(r − �)b4] with

Wc(r) the Ornstein–Uhlenbeck process that is the solution to the stochastic diBerential
equation dWc(r) = cWc(r) dr + dW (r) with Wc(0) = 0. Also, b3, b4 are de2ned by
b3 = (-1b1 + -2b2) and b4 = (-2b1 + -3b2) where b1 = (1− Nc)Wc(1) + Nc2

∫ 1
0 rWc(r) dr,

b2=(1− Nc+� Nc)Wc(1)+ Nc2
∫ 1
� Wc(r)(r−�) dr−Wc(�), -1=d=.; -2=−m=., d=1−�− Nc+

2 Nc�− Nc�2− Nc2�+Nc2�2+( Nc2=3)(1−�3), m=1−�− Nc+Nc�−( Nc2=2)�+( Nc2=2)�3+( Nc2=3)(1−�3),
a= 1− Nc + Nc2=3, .= ad− m2 and -3 = a=..



6 P. Perron, G. Rodr�5guez / Journal of Econometrics 115 (2003) 1–27

In practice, it is usually the case that an investigator wants to treat the break point as
unknown. In this case, an estimate of the break point is needed. A method suggested
by Zivot and Andrews (1992) is to consider estimating � as the break point that yields
the minimal value of the statistics, i.e. using inf � JGLS(�) where J =MZ�, MSB, MZt ,
and ADF . Using the continuous mapping theorem and arguments as in Perron (1997),
we have, assuming no shift in the trend function under the null hypothesis:

inf
�∈[0;1]

JGLS(�) ⇒ inf
�∈[0;1]

HJGLS(c; Nc; �); (11)

for J = MZ�; MSB; MZt , and ADF with the functions H (·) de=ned in Theorem 1.
Note that no truncation for the range of possible break points needs to be imposed. As
discussed in Vogelsang and Perron (1998), the implied estimate of � is not consistent
for the true value of the break point when the data generating process contains a break.
These authors also note that the tests statistic are not invariant (even asymptotically)
to values of the coe$cients of the change in the trend. Nevertheless, they argue that,
in typical sample sizes, this is not a problem unless the changes are extremely large.
Thus, these tests can still be used with the critical values derived assuming no shift
under the null hypothesis.
An alternative method to select the break date, as used in Perron (1997), is to choose

it such that the absolute value of the t-statistic on the coe$cient of the change in slope
is maximized. This procedure has been used by many authors, e.g. Christiano (1992),
Banerjee et al. (1992), Perron (1997) and Vogelsang and Perron (1998). Consider, for
example Model I where the deterministic component is given by dt =  1 + !1t +
!2(t − TB)1(t ¿TB). Let !̂2(�) be the GLS estimate of !2 and t!̂2 (�) be its associated

t-statistic. The break point can be selected using the estimate �̂=argmax�∈[2;1−2] |t!̂2 (�)|,
where 2 is some small number imposing a trimming on the possible values of the
break dates. We shall use 2= 0:15 throughout. As discussed in Vogelsang and Perron
(1998), if under the null hypothesis we have !2 �= 0 and the true break point given
by T 0

B=T = �0, then �̂ is a consistent estimate of �0 and the limiting distributions of
the test statistics correspond to those in the case where the break date is known, i.e.
the limit distributions given in Theorem 1 evaluated at �0. In practice, one can simply
evaluate these limit distributions at the estimated value �̂.
When, under the null hypothesis, !2 = 0 in which case there is no change in the

slope of the trend function, it is easy to show (using the results of Lemma A.2 in
Appendix A) that t!̂2 (�) ⇒ b4=(-

1=2
3 ), where b4 and -3 are de=ned in Theorem 1. We

then have

�̂= arg max
�∈[2;1−2]

|t!̂2 (�)| ⇒ arg max
�∈[2;1−2]

|b4=(-1=23 )| ≡ �∗: (12)

Hence, the limiting distributions of the statistics are given by

JGLS(�̂) ⇒ HJGLS(c; Nc; �∗); (13)

for J =MZ�; MSB; MZt , and ADF with the functions H (·) de=ned in Theorem 1.
In practice, it is di$cult to know if there is a change in slope since any test of such

hypothesis would depend on whether a unit root is present or not. Hence, a conservative
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procedure is to use the critical values corresponding to the case where it is assumed
that no break is present, i.e. (13). This is the procedure we use in the following.

4. Feasible point optimal test and the power envelope

Elliott et al. (1996), following Dufour and King (1991), have considered the issue
of developing tests with optimality properties under Gaussian errors. The case where
the break point is assumed known follows closely their analysis. While a uniformly
most powerful test is not attainable, it is possible to de=ne a point optimal test against
the alternative �= N�. If vt is i.i.d., this is provided by the likelihood ratio statistic, which
simpli=es, under normality, to L(�) = S( N�; �) − S(1; �), where S( N�; �) and S(1; �) are
the sums of squared errors from a GLS regression with �= N� and �= 1, respectively.
Varying the value of N�, gives a family of point optimal tests and the Gaussian power
envelope for testing �=1. To allow for serial correlation in the errors vt , ERS proposed
a feasible point optimal test (PGLS

T ) de=ned by

PGLS
T (c; Nc; �) = {S( N�; �)− N�S(1; �)}=s2: (14)

The next theorem provides the limiting distribution of the PGLS
T test.

Theorem 2. Let yt be generated by (1) with �=1+c=T . Let PGLS
T be de2ned by (14)

with data obtained from local GLS detrending (ỹ t) at N�= 1+ Nc=T . Also, let s2 be a
consistent estimate of �2. The limit distribution of the PGLS

T test under Models I and
II is given by

PGLS
T (c; Nc; �)⇒M (c; 0; �)−M (c; Nc; �)− 2 Nc

∫ 1

0
Wc(r) dW (r)

+ ( Nc2 − 2 Ncc)
∫ 1

0
Wc(r)2 dr − Nc

≡ HPGLS
T (c; Nc; �): (15)

where M (c; Nc; �) = A(c; Nc; �)B( Nc; �)−1A(c; Nc; �) with A(c; Nc; �) a 2× 1 vector de2ned by


W (1) + (c − Nc)
∫ 1

0
Wc(r) dr

− Nc
∫ 1

0
r dW (r)− (c − Nc) Nc

∫ 1

0
rWc(r) dr

(1 + � Nc)

(
[W (1)−W (�)] + (c − Nc)

∫ 1

�
Wc(r) dr

)

− Nc
∫ 1

�
r dW (r)− (c − Nc) Nc

∫ 1

�
rWc(r) dr
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and B( Nc; �) is a symmetric matrix with entries

[
Nc2=3− Nc + 1 (1− �)(1− Nc) + Nc2(2 + �3 − 3�)=6

Nc2(1− �3)=3− Nc(1− �2)(1 + � Nc) + (1− �)(1 + � Nc)2

]
:

The asymptotic expression (15) for the PGLS
T test allows us to de=ne the asymp-

totic power envelope for the two models. It is given by 3(c; �) = Pr[HPGLS
T (c; c; �)

¡bPGLS
T (c; �)], where bPGLS

T (c; �) is such that Pr[HPGLS
T (0; c; �)¡bPGLS

T (c; �)] = 4, with 4
the size of the test. Note that, in general, a diDerent power envelope exists for each
values of �.
When � is unknown, things are rather diDerent. The principle is, however, the same.

To maximize the likelihood function under the null and alternative hypotheses, the
estimate of � must be chosen to minimize the sum of squares residuals S(1; �) and
S( N�; �), respectively. Hence, the corresponding asymptotic version of the feasible point
optimal test is then

PGLS
T;∗ (c; Nc) =

{
inf

�∈[2;1−2]
S( N�; �)− inf

�∈[2;1−2]
N�S(1; �)

}/
s2:

Note that a trimming 2 is necessary otherwise the critical values become unbounded.
The reason is similar to that encountered in the context of tests for structural change
(see, e.g., Andrews, 1993). We use 2=0:15 throughout. In the case of this feasible point
optimal test, there is a problem of which method to choose to select the break date
to construct the estimate s2. Based on =nite sample properties assessed via simulations
we opted for evaluating s2 at the break point �̂, say, which minimizes the sum of
squared residuals under the alternative, i.e. we select �̂=argmin�∈[2;1−2] S( N�; �). Using
Theorem 2, we have

PGLS
T;∗ (c; Nc)⇒ sup

�∈[2;1−2]
M (c; 0; �)− sup

�∈[2;1−2]
M (c; Nc; �)

− 2 Nc
∫ 1

0
Wc(r) dW (r) + ( Nc2 − 2 Ncc)

∫ 1

0
Wc(r)2 dr − Nc

≡ HPGLS
T∗ (c; Nc): (16)

The asymptotic Gaussian power envelope is then de=ned as 3∗(c) = Pr[HPGLS
T∗ (c; c)

¡bPGLS
T∗ (c)], where, with 4 the size of the test, bPGLS

T∗ (c) is such that Pr[HPGLS
T∗ (0; c)

¡bPGLS
T∗ (c)] = 4. Furthermore, the power envelope allows us to =nd the “optimal”

non-centrality parameter Nc for our models. ERS recommended to choose the value Nc

such that the asymptotic power of the test is 50%, i.e. Nc is such that Pr[HPGLS
T∗ ( Nc; Nc)

¡bPGLS
T∗ ( Nc)] = 0:5. Using simulations, we found that Nc =−22:5 and we use this value

in the rest of the paper.
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5. Critical values and asymptotic power functions

In this section, we obtain the asymptotic critical values for the tests assuming Nc =
−22:5 is used to detrend the data. We simulate directly the asymptotic distributions
using 1000 steps to approximate the Wiener process on [0; 1] as the partial sums
of i.i.d. N(0; 1) random variables. The limiting distributions are tabulated for the null
hypothesis c=0. For the =nite sample distributions, we use T=100 with data generated
by a random walk with zero initial condition and i.i.d. N(0; 1) errors. Here k is set
to 0 which is equivalent to using the true value of �2; the eDects of selecting k
are investigated in the next section. In all cases, 10,000 replications are used. The
results are in the =rst three columns of Table 1a and Table 1b for, respectively, the
case where the break point is selected by minimizing the tests and when the break
point is selected maximizing the absolute value of the t-statistic on the coe$cient of
the change in slope. In general, the approximation to the =nite sample distribution is
adequate but somewhat less good for Model II which contains a change in intercept
that is asymptotically negligible.
The asymptotic power functions of the tests are de=ned by 3∗

JGLS(c; Nc) = Pr[inf �∈[0;1]
HJGLS(c; Nc; �)¡bJGLS( Nc)] or 3∗

JGLS(c; Nc)=Pr[H
JGLS(c; Nc; �∗)¡bJGLS

∗ ( Nc)] for J=MZ�, MSB,
MZt , ADF and with Hi(c; Nc) de=ned in Theorem 1 and �∗ de=ned by (12). The con-
stants bJGLS( Nc) and bJGLS

∗ ( Nc) are such that Pr[inf �∈[0;1] HJGLS(0; Nc; �)¡bJGLS( Nc)]= 4, and
Pr[HJGLS(0; Nc; �∗)¡bJGLS

∗ ( Nc)]= 4, the size of the tests. The asymptotic power functions
are shown in Fig. 1 where the solid line is the power envelope. The MGLS tests, and
especially the PGLS

T test, have asymptotic power functions very close to the power en-
velope both when the break point is selected by minimizing the tests and when it is
selected maximizing the absolute value of the t-statistic of the coe$cient on the change
in slope. This is also true of the ADFGLS test since it is asymptotically equivalent to
the MZGLS

t test. Hence, in terms of asymptotic power, all tests considered are basically
equivalent.

6. Size and power of the tests in &nite samples

6.1. The size issue, the selection of k and information criteria

All tests require the estimation of the augmented autoregression (10). Ng and Perron
(2001) recommended using GLS detrended data with the same non-centrality parameter
Nc for constructing s2 and the tests. We follow their suggestion and, in subsequent results,
Nc=−22:5 is used to detrend the data when constructing the tests and when estimating
the autoregression (10) to construct s2.
In our simulations and empirical applications, we consider three data dependent

methods to select the order of the autoregression. The =rst is the standard Bayesian
Information Criterion (BIC). We follow the recommendation of Ng and Perron (2001)
by con=ning the search for the best value of k in a range [0; kmax]. Also, all regressions
are estimated using the same number of eDective observations, T ∗ = T − kmax. The
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Fig. 1. Gaussian local power envelope and the local asymptotic power functions of the tests.

BIC is then de=ned as kbic = argmink∈[0; kmax] {log(s2ek) + (ln(T ∗)k)=T ∗} with s2ek =

T ∗−1 ∑T
t=kmax+1 ê2tk with ê tk obtained from (10) estimated from t = kmax + 1 to T . We

also consider the Modi=ed Akaike Information Criterion (MAIC), advocated by Ng
and Perron (2001), de=ned by kmaic = argmink∈[0; kmax] {log(s2ek) + (2(6̂T (k) + k))=T ∗},
where 6̂T (k) = (s2ek)

−1b̂20
∑T

t=kmax+1 ỹ
2
t−1 with b̂0 obtained from (10). As shown in Ng

and Perron (2001), the MAIC works as well as standard information criteria when the
extent of correlation is mild but provides unit root tests having better =nite sample size
with a negative MA component. We also consider the sequential t-test, denoted t-sig, for
the signi=cance of the last lag, considered in Ng and Perron (1995), with a two-tailed
10% size. When using an information criterion, we set kmax = int[10 ∗ (T=100) (̂1=4)]
and for the t-sig method, we set kmax = int[4 ∗ (T=100) (̂1=4)]. Note that once the order
k is selected, at k∗ say, s2 is constructed using all possible observations, i.e. estimating
(10) from t = k∗ + 1 to T .
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6.2. Critical values with data-dependent methods to select k

While the asymptotic distribution is a good approximation to the =nite sample dis-
tribution for any of the test considered when k is =xed, signi=cant diDerences can
occur when using a data-dependent method to select k, especially in the context of
tests involving breaks at unknown dates (e.g., Perron, 1997). We present in Tables 2
and 3, for both Models I and II, the =nite sample critical values of the tests when
using either of the three data-dependent methods to select k. Two sample sizes are
considered, T = 100 and 200. These were obtained from simulations with 1000 repli-
cations from the data-generating process de=ned by (1) with dt = 0, � = 1 and vt ∼
i:i:d: N(0; 1).
The results show substantial diDerences, especially when using the method t-sig

which yields =nite sample critical values much smaller than the asymptotic ones (hence,
using the latter would imply liberal size distortions). When using the MAIC, the result
is opposite, namely =nite sample critical values that are higher than the asymptotic ones
(hence, using the latter would imply conservative tests). With the BIC, the diDerence
are not so large but still important. For these reasons, we recommend the use of these
=nite sample critical values “adjusted for the eDect of using a data-dependent method to
select k”. The simulations and empirical applications below make use of these instead
of the asymptotic ones.

6.3. Size and power of the tests

We now consider the size and power of the tests in =nite samples using the various
data-dependent methods to select the truncation lag described above. Our simulations
are based on 1000 replications of the DGP de=ned by (1) with dt=0. We consider pure
MA(1) processes, i.e. with vt=(1+8L)et and pure AR(1) processes, i.e. (1−9L)vt=et ,
where et ∼ i:i:d: N(0; 1). For both the MA(1) and AR(1) cases, we consider 8 and 9
in the range [− 0:8; 0:8]. We consider the sample sizes T = 100 and 200. The power
is evaluated at N� = 1 + Nc=T for Nc =−22:5 which implies that the asymptotic power is
50%. All results presented are for 5% nominal size tests.
The results for the case where the break point is chosen by minimizing the tests

are presented in Table 2 for T = 100 and Table 3 for T = 200. With i.i.d. errors,
as expected, the power of the tests when the sequential t-sig is used to select k is
low. With the MAIC or BIC, the power is indeed close to the asymptotic value of
50%. For the ADFGLS test, the power is high for all methods to choose k. Given these
results, we shall not discuss further the behavior of the tests with the sequential t-sig
method.
Consider now the case where the errors have a negative MA component. For all tests,

the use of the BIC to select k implies tests with severe size distortions with exact sizes
above 90% with T = 100 (80% with T = 200) when the MA component is −0:8 and
about 40% with T = 100 (23% with T = 200) when it is −0:4. On the other hand,
the MAIC allows the MGLS and the PGLS

T tests to have much less size distortions.
The exact size is about 33% with T = 100 (10% with T = 200) when the coe$cient
is −0:8 and about 14% with T = 100 (9% with T = 200) when it is −0:4. But even
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Table 2
Size and power; choosing TB minimizing the tests; Model I; T = 100 ( Nc =−22:5 when constructing s2 for
the MGLS and PGLS

T tests; 5% nominal size tests)

Criteria Size Power

MZ� MSB MZt PT ADF MZ� MSB MZt PT ADF

i.i.d. BIC 0.051 0.051 0.051 0.050 0.050 0.348 0.319 0.347 0.375 0.462
MAIC 0.050 0.051 0.050 0.050 0.050 0.481 0.484 0.468 0.486 0.459
t-sig 0.050 0.051 0.051 0.051 0.051 0.131 0.131 0.130 0.153 0.421

Moving-average processes
8 =−0:8 BIC 0.930 0.931 0.930 0.922 0.969 1.000 1.000 1.000 0.999 1.000

MAIC 0.334 0.334 0.329 0.286 0.353 0.778 0.783 0.776 0.669 0.809
t-sig 0.074 0.074 0.074 0.071 0.717 0.293 0.293 0.295 0.250 0.938

8 =−0:4 BIC 0.391 0.385 0.385 0.368 0.447 0.874 0.873 0.874 0.865 0.903
MAIC 0.145 0.146 0.141 0.138 0.124 0.506 0.505 0.497 0.475 0.461
t-sig 0.025 0.025 0.025 0.026 0.228 0.096 0.096 0.096 0.100 0.683

8 = 0:4 BIC 0.226 0.224 0.227 0.201 0.076 0.696 0.687 0.698 0.683 0.494
MAIC 0.109 0.108 0.098 0.066 0.017 0.166 0.169 0.160 0.162 0.100
t-sig 0.051 0.053 0.051 0.056 0.058 0.157 0.157 0.158 0.199 0.378

8 = 0:8 BIC 0.481 0.482 0.478 0.364 0.107 0.703 0.699 0.707 0.679 0.400
MAIC 0.185 0.191 0.176 0.091 0.011 0.336 0.337 0.327 0.301 0.084
t-sig 0.074 0.076 0.074 0.081 0.052 0.233 0.231 0.232 0.269 0.215

Autoregressive processes
9 =−0:8 BIC 0.010 0.010 0.010 0.007 0.041 0.030 0.029 0.031 0.026 0.410

MAIC 0.003 0.002 0.003 0.002 0.043 0.015 0.017 0.015 0.016 0.359
t-sig 0.016 0.016 0.015 0.016 0.043 0.054 0.054 0.054 0.067 0.384

9 =−0:4 BIC 0.129 0.120 0.128 0.115 0.135 0.475 0.469 0.476 0.465 0.549
MAIC 0.064 0.063 0.063 0.063 0.059 0.360 0.365 0.356 0.374 0.396
t-sig 0.030 0.030 0.030 0.035 0.071 0.116 0.116 0.116 0.134 0.420

9 = 0:4 BIC 0.146 0.146 0.146 0.112 0.038 0.496 0.477 0.499 0.502 0.275
MAIC 0.122 0.131 0.113 0.083 0.022 0.122 0.124 0.116 0.083 0.058
t-sig 0.057 0.058 0.057 0.057 0.047 0.147 0.146 0.147 0.162 0.273

9 = 0:8 BIC 0.290 0.298 0.278 0.183 0.060 0.346 0.341 0.343 0.331 0.107
MAIC 0.342 0.360 0.321 0.204 0.074 0.404 0.415 0.390 0.355 0.141
t-sig 0.136 0.139 0.134 0.084 0.064 0.108 0.108 0.107 0.119 0.118

when using the MAIC, the ADFGLS test still suDers from high size distortions (with
8=−0:8, the size is 18% when T = 200).
When the errors have a positive moving average coe$cient, the MGLS tests and

the PGLS
T tests are liberal, while the ADFGLS test has the correct size (especially with

T =200). With a negative autoregressive coe$cient, the MGLS tests and the PGLS
T test



P. Perron, G. Rodr�5guez / Journal of Econometrics 115 (2003) 1–27 15

Table 3
Size and power; choosing TB minimizing the tests; Model I; T = 200 ( Nc =−22:5 when constructing s2 for
the MGLS and PGLS

T tests; 5% nominal size tests)

Criteria Size Power

MZ� MSB MZt PT ADF MZ� MSB MZt PT ADF

i.i.d. BIC 0.051 0.051 0.050 0.051 0.051 0.512 0.494 0.505 0.488 0.501
MAIC 0.050 0.050 0.051 0.050 0.051 0.495 0.492 0.505 0.482 0.476
t-sig 0.051 0.051 0.051 0.050 0.051 0.235 0.230 0.239 0.289 0.430

Moving-average processes
8 =−0:8 BIC 0.814 0.809 0.814 0.783 0.860 0.992 0.991 0.992 0.989 0.997

MAIC 0.102 0.099 0.104 0.076 0.178 0.366 0.366 0.365 0.272 0.510
t-sig 0.278 0.277 0.277 0.296 0.539 0.655 0.655 0.656 0.628 0.931

8 =−0:4 BIC 0.239 0.230 0.235 0.218 0.225 0.817 0.808 0.815 0.797 0.820
MAIC 0.091 0.091 0.094 0.074 0.074 0.453 0.458 0.460 0.418 0.427
t-sig 0.034 0.034 0.035 0.043 0.110 0.297 0.287 0.295 0.342 0.605

8 = 0:4 BIC 0.144 0.144 0.141 0.130 0.089 0.702 0.687 0.698 0.673 0.552
MAIC 0.102 0.104 0.101 0.083 0.046 0.514 0.511 0.510 0.468 0.356
t-sig 0.068 0.067 0.069 0.072 0.050 0.329 0.324 0.331 0.380 0.401

8 = 0:8 BIC 0.296 0.290 0.291 0.241 0.076 0.694 0.683 0.693 0.665 0.392
MAIC 0.181 0.182 0.181 0.120 0.027 0.447 0.445 0.453 0.382 0.155
t-sig 0.149 0.151 0.146 0.156 0.064 0.515 0.509 0.517 0.550 0.313

Autoregressive processes
9 =−0:8 BIC 0.006 0.006 0.006 0.006 0.045 0.045 0.037 0.044 0.040 0.463

MAIC 0.001 0.001 0.001 0.000 0.047 0.033 0.033 0.035 0.032 0.395
t-sig 0.016 0.016 0.016 0.014 0.046 0.061 0.059 0.061 0.068 0.411

9 =−0:4 BIC 0.052 0.049 0.049 0.037 0.048 0.444 0.424 0.434 0.417 0.458
MAIC 0.047 0.045 0.046 0.036 0.045 0.400 0.403 0.408 0.381 0.425
t-sig 0.034 0.034 0.033 0.041 0.043 0.201 0.194 0.199 0.228 0.418

9 = 0:4 BIC 0.106 0.105 0.104 0.090 0.041 0.585 0.562 0.582 0.560 0.411
MAIC 0.105 0.103 0.108 0.083 0.054 0.494 0.493 0.506 0.465 0.356
t-sig 0.068 0.068 0.067 0.065 0.044 0.267 0.263 0.268 0.320 0.367

9 = 0:8 BIC 0.146 0.141 0.138 0.106 0.057 0.405 0.394 0.393 0.371 0.229
MAIC 0.164 0.175 0.156 0.108 0.062 0.399 0.397 0.400 0.369 0.229
t-sig 0.091 0.094 0.091 0.070 0.053 0.212 0.204 0.211 0.228 0.206

are very conservative and, hence, show basically no power. The ADF has the correct
size and power is good. When the autoregressive coe$cient is positive, the MGLS tests
and the PGLS

T test are liberal. The ADFGLS has better size but no power.
The results show that the ADFGLS with k chosen using the MAIC has better overall

properties unless there is a negative MA component in the errors, in which case the
MGLS and the PGLS

T tests are superior.
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Table 4
Size and power; choosing TB maximizing |t!̂2 |; Model I; T = 100 ( Nc =−22:5 when constructing s2 for the

MGLS and PGLS
T tests; 5% nominal size tests)

Criteria Size Power

MZ� MSB MZt ADF MZ� MSB MZt ADF

i.i.d. BIC 0.050 0.051 0.051 0.051 0.411 0.414 0.402 0.478
MAIC 0.051 0.050 0.050 0.050 0.503 0.475 0.499 0.465
t-sig 0.051 0.051 0.051 0.051 0.150 0.151 0.154 0.447

Moving-average processes
8 =−0:8 BIC 0.928 0.930 0.926 0.966 1.000 1.000 1.000 1.000

MAIC 0.289 0.286 0.289 0.304 0.669 0.669 0.669 0.698
t-sig 0.070 0.070 0.070 0.689 0.250 0.250 0.250 0.925

8 =−0:4 BIC 0.399 0.405 0.397 0.430 0.870 0.870 0.870 0.895
MAIC 0.138 0.131 0.136 0.113 0.479 0.466 0.475 0.433
t-sig 0.025 0.025 0.025 0.206 0.099 0.099 0.100 0.668

8 = 0:4 BIC 0.216 0.225 0.211 0.072 0.707 0.711 0.703 0.494
MAIC 0.064 0.065 0.066 0.010 0.156 0.139 0.161 0.107
t-sig 0.053 0.053 0.054 0.055 0.195 0.199 0.195 0.389

8 = 0:8 BIC 0.390 0.397 0.380 0.089 0.683 0.686 0.682 0.386
MAIC 0.089 0.088 0.087 0.008 0.297 0.281 0.294 0.091
t-sig 0.079 0.080 0.078 0.045 0.260 0.262 0.263 0.212

Autoregressive processes
9 =−0:8 BIC 0.006 0.006 0.006 0.041 0.028 0.028 0.027 0.398

MAIC 0.002 0.003 0.002 0.041 0.015 0.017 0.016 0.335
t-sig 0.016 0.016 0.016 0.040 0.062 0.062 0.062 0.377

9 =−0:4 BIC 0.121 0.120 0.121 0.128 0.474 0.475 0.468 0.546
MAIC 0.063 0.057 0.063 0.053 0.368 0.352 0.370 0.391
t-sig 0.032 0.035 0.033 0.066 0.127 0.128 0.127 0.415

9 = 0:4 BIC 0.132 0.136 0.127 0.033 0.525 0.530 0.520 0.287
MAIC 0.078 0.084 0.080 0.014 0.080 0.077 0.079 0.047
t-sig 0.055 0.056 0.054 0.040 0.156 0.158 0.157 0.281

9 = 0:8 BIC 0.206 0.217 0.197 0.037 0.353 0.356 0.344 0.108
MAIC 0.225 0.240 0.210 0.048 0.372 0.362 0.365 0.127
t-sig 0.087 0.091 0.087 0.042 0.117 0.119 0.118 0.114

The results for the case where the break is selected by maximizing the absolute
value of the t-statistic on the coe$cient of the change in slope are in Table 4 for
T=100 and Table 5 for T=200. They show properties with basically similar qualitative
features with size distortions being slightly smaller.
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Table 5
Size and power; choosing TB maximizing |t!̂2 |; Model I; T = 200 ( Nc =−22:5 when constructing s2 for the

MGLS and PGLS
T tests; 5% nominal size tests)

Criteria Size Power

MZ� MSB MZt ADF MZ� MSB MZt ADF

i.i.d. BIC 0.051 0.051 0.051 0.051 0.518 0.504 0.513 0.520
MAIC 0.051 0.050 0.051 0.050 0.505 0.484 0.515 0.478
t-sig 0.051 0.050 0.051 0.051 0.275 0.267 0.279 0.483

Moving-average processes
8 =−0:8 BIC 0.796 0.793 0.796 0.856 0.991 0.989 0.991 0.997

MAIC 0.076 0.072 0.079 0.139 0.277 0.272 0.281 0.422
t-sig 0.290 0.286 0.288 0.538 0.625 0.620 0.624 0.915

8 =−0:4 BIC 0.226 0.220 0.224 0.223 0.822 0.808 0.818 0.826
MAIC 0.079 0.077 0.081 0.068 0.436 0.424 0.438 0.406
t-sig 0.038 0.037 0.040 0.116 0.325 0.318 0.327 0.633

8 = 0:4 BIC 0.142 0.138 0.138 0.088 0.703 0.683 0.696 0.567
MAIC 0.094 0.092 0.094 0.042 0.479 0.472 0.481 0.342
t-sig 0.068 0.070 0.069 0.057 0.365 0.351 0.364 0.422

8 = 0:8 BIC 0.261 0.256 0.249 0.070 0.684 0.669 0.681 0.400
MAIC 0.132 0.128 0.128 0.018 0.403 0.388 0.407 0.148
t-sig 0.148 0.147 0.146 0.069 0.544 0.535 0.542 0.350

Autoregressive processes
9 =−0:8 BIC 0.006 0.005 0.006 0.046 0.045 0.041 0.045 0.471

MAIC 0.000 0.000 0.000 0.037 0.034 0.031 0.035 0.376
t-sig 0.014 0.014 0.015 0.051 0.061 0.062 0.062 0.428

9 =−0:4 BIC 0.047 0.045 0.042 0.046 0.454 0.426 0.448 0.477
MAIC 0.039 0.036 0.041 0.043 0.399 0.387 0.412 0.421
t-sig 0.037 0.035 0.035 0.052 0.214 0.200 0.214 0.449

9 = 0:4 BIC 0.101 0.095 0.096 0.041 0.594 0.563 0.584 0.427
MAIC 0.087 0.083 0.088 0.048 0.480 0.462 0.490 0.353
t-sig 0.065 0.064 0.063 0.043 0.308 0.298 0.308 0.407

9 = 0:8 BIC 0.119 0.116 0.110 0.046 0.400 0.381 0.384 0.229
MAIC 0.118 0.128 0.121 0.053 0.382 0.364 0.387 0.224
t-sig 0.070 0.067 0.066 0.043 0.218 0.212 0.215 0.227

7. Empirical applications

Among the macroeconomic time series considered by Nelson and Plosser (1982),
Perron (1989) argued that two of them were likely aDected by a signi=cant change
in slope and intercept for the samples analyzed, namely the Real Wages and Stock
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Fig. 2. Logarithm of real wages (1900–1970).

Fig. 3. Logarithm of common stock prices (1871–1970).

Prices series. The series are presented in Figs. 2 and 3. We re-evaluate the claim made
by Perron (1989) that these series are trend-stationary if allowance is made for such
a change in slope and intercept using our new tests. We applied the MZGLS

t , PGLS
T

and ADFGLS tests using the BIC and MAIC criteria to select the autoregressive order
(imposing a minimal value of 1).
The results are presented in Table 6 for the case where the break date is selected

minimizing the test. Using the BIC to select k, all tests point to a strong rejection at the
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Table 6
Empirical results for the real wages and stock prices series choosing the break point minimizing the tests

Serie T Criteria MZ� k TB MZt k TB PT k TB ADF k TB �̂

Stock prices 100 BIC −48:4b 1 1941 −4:9b 1 1941 8:3b 1 1931 −5:1b 1 1937 0.666
MAIC −47:7a 1 1937 −4:8a 1 1937 12:5d 1 1931 −5:1a 1 1937 0.666

Real wages 71 BIC −38:4c 1 1938 −4:3c 1 1938 10:3c 1 1940 −4:6c 1 1938 0.619
MAIC −38:4a 1 1938 −4:3a 1 1938 10:3b 1 1940 −4:6b 1 1938 0.619

Notes: (1) For the applications, we impose a minimal value k = 1; (2) the superscripts a, b, c and d
denote signi=cance levels at the 1.0%, 2.5%, 5.0%, and 10.0%, respectively.

Table 7
Empirical results for the real wages and stock prices series choosing the break point maximizing |t!̂2 |

Serie T Criteria MZ� MZt ADF k TB �̂

Stock prices 100 BIC −31:9b −3:9b −4:1c 1 1931 0.753
MAIC −21:2d −3:2d −3:2 1 1931 0.793

Real wages 71 BIC −27:7c −3:6c −3:8d 1 1933 0.697
MAIC −27:7a −3:6a −3:8c 1 1933 0.697

Notes: (1) For the applications, we impose a minimal value k = 1; (2) the superscripts a, b, c and d
denote signi=cance levels at the 1.0%, 2.5%, 5.0%, and 10.0%, respectively.

2.5% signi=cance level for the Stock Prices series with the break date selected between
1931 and 1941 depending on the speci=cation used. With the MAIC to select k, there
is a rejection at the 1% level (except with the test PGLS

T ). For the Real Wages series,
there is a rejection at least at the 1% or 2.5% signi=cance level using the criterion
MAIC to select k and at the 5% level using the BIC. The break date is selected at 1938
or 1940 depending on the speci=cation used. The estimated trend function is plotted
in Figs. 2 and 3 using TB = 1937 for the Stock Prices series and TB = 1938 for the
Real Wages series.
Table 7 presents the results of the tests when the break date is selected by maximizing

the absolute value of the t-statistic on the coe$cient of the slope change. For Stock
Prices, the break date selected is 1931 and there is a rejection at the 2.5% or 5%
signi=cance level using BIC but there is little evidence against the unit root using the
MAIC. For the Real Wages series, the break date selected is 1933. The tests show a
rejection at least at the 5% signi=cance level (except for the ADFGLS test using BIC
to select the autoregressive order).

8. Conclusions

We considered tests for the null hypothesis of a unit root in the presence of a
one time change in the trend function and followed Elliott et al. (1996) and Dufour
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and King (1991) by detrending the data using a local to unity GLS approach. The
extensions of the ADF and the PT as well as of the various M tests suggested by
Perron and Ng (1996) were studied. We also investigated the properties of the tests
when the break point is selected either by minimizing the tests or by maximizing the
absolute value of the t-statistic on the coe$cient of the change in slope. All tests
have a local asymptotic power function that lies close to the Gaussian power envelope
though our simulations reveal that, in =nite sample, the latter method yields tests with
less power. Hence, for applications we recommend using either the ADFGLS or the
MGLS or PGLS

T tests with the break point selected by minimizing the tests. The main
diDerence among the tests is that the ADFGLS has worse size distortions in the negative
MA case but better power in the negative AR case; the MGLS and PGLS

T tests have good
size overall but very little power in the negative AR case. The choice between the two
depends on the investigator’s assessment of the likely importance of one or the other
class of processes in the data considered. Our experiments also suggest that the use of
the MAIC to select the autoregressive truncations lag leads to tests with better overall
properties.
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Appendix A.

Throughout, we use the following lemma which is by now standard.

Lemma A.1. Let {ut} be a near-integrated series generated by (2). Then, we have:
(a) T−1=2u[Tr] ⇒ �Wc(r); (b) T−3=2 ∑T

t=1 ut ⇒ �
∫ 1
0 Wc(r) dr; (c) T−2 ∑T

t=1 u2t ⇒
�2
∫ 1
0 W 2

c (r) dr; (d) T−1 ∑T
t=1 ut−1vt ⇒ �2{∫ 10 Wc(r) dW (r)+�} with �=(�2−�2v)=2�

2.

We start with results concerning the limit of the estimates of the coe$cients of the
trend function obtained from (3). For Model I, we have

Lemma A.2. Suppose that yt is generated by (1) with �= 1 + c=T and {zt} is given
by (4). Let  ̂ (�) be the GLS estimates, from minimizing (3), of the coeCcients
of the trend function obtained using N� = 1 + Nc=T . Then, with terms as de2ned in
Theorem 1:

 ̂1 −  1 ⇒ v1;
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T 1=2(!̂1 − !1) ⇒ �(-1b1 + -2b2) ≡ �b3;

T 1=2(!̂2 − !2) ⇒ �(-2b1 + -3b2) ≡ �b4:

Proof of Lemma A.2. In matrix notation, we have

 ̂ (�)−  = [(Vz − NcT−1z−1)′(Vz − NcT−1z−1)]−1

×[(Vz − NcT−1z−1)′(Vu− NcT−1u−1)]; (A.1)

where

Vz = (z1; z2 − z1; : : : ; zT − zT−1);

z−1 = (0; z1; z2; : : : ; zT−1);

Vu= (u1; u2 − u1; : : : ; uT − uT−1);

u−1 = (0; u1; u2; : : : ; uT−1):

Now de=ne the scaling matrix :T = diag(1; T 1=2; T 1=2), we can write expression (A.1)
as

:T ( ̂ (�)−  ) = <T (�)−1=T (�); (A.2)

where

<T (�) =:−1
T [(Vz − NcT−1z−1)′(Vz − NcT−1z−1)]:−1

T ;

and

=T (�) =:−1
T [(Vz − NcT−1z−1)′(Vu− NcT−1u−1)]:

We =rst consider the limit of each element of the matrix <T (�) denoted <ij (i; j=1; 2; 3).
We let Vz(i) and z−1(i) be the ith element of the vectors Vz and z−1, respectively. We
have

<11 = (Vz(1) − NcT−1z−1(1))′(Vz(1) − NcT−1z−1(1)) ⇒ 1;

<12 = T−1=2(Vz(1) − NcT−1z−1(1))′(Vz(2) − NcT−1z−1(2)) ⇒ 0;

<13 = T−1=2(Vz(1) − NcT−1z−1(1))′(Vz(3) − NcT−1z−1(3)) ⇒ 0;

<22 = T−1(Vz(2) − NcT−1z−1(2))′(Vz(2) − NcT−1z−1(2)) ⇒ 1− Nc + Nc2=3 ≡ a;

<23 = T−1(Vz(2) − NcT−1z−1(2))′(Vz(3) − NcT−1z−1(3))

⇒ 1− �− Nc + Nc�− ( Nc2=2)�+ ( Nc2=2)�3 + ( Nc2=3)(1− �3) ≡ m;
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<33 = T−1(Vz(3) − NcT−1z−1(3))′(Vz(3) − NcT−1z−1(3))

⇒ 1− �− Nc + 2 Nc�− Nc�2 − Nc2�+ Nc2�2 + ( Nc2=3)(1− �3) ≡ d:

We next consider the limit of each element of the vector =T (�), denoted =i (i=1; 2; 3).
We have

=1 = (Vz(1) − NcT−1z−1(1))′(Vu− NcT−1u−1) ⇒ v1;

=2 = T−1=2(Vz(2) − NcT−1z−1(2))′(Vu− NcT−1u−1)

⇒ �

[
Wc(1)(1− Nc) + Nc2

∫ 1

0
rWc(r) dr

]
≡ �b1;

=3 = T−1=2(Vz(3) − NcT−1z−1(3))′(Vu− NcT−1u−1)

⇒ �

[
Wc(1)(1− Nc + � Nc) + Nc2

∫ 1

�
Wc(r)(r − �) dr −Wc(�)

]
≡ �b2:

Hence, using the symmetry of <T (�),

:T ( ̂ (�)−  ) ⇒



1 0 0

0 a m

0 m d



−1 

v1

�b1

�b2


 :

The proof of the lemma follows upon solving for the inverse. For Model II, we have

Lemma A.3. Suppose that yt is generated by (1) with �= 1 + c=T and {zt} is given
by (5). Let  ̂ (�) be the GLS estimates, from minimizing (3), of the coeCcients of
the trend function obtained using N� = 1 + Nc=T . Then, the result of Lemma A:2 still
apply with the addition that  ̂2 −  2 ⇒ limT→∞ v[T�]+1 ≡ v∗.

The proof of Lemma A.3 is basically the same as that of Lemma A.2 and, hence,
omitted.

Proof of Theorem 1. The proof uses the results of Lemmas A.2 and A.3. We show
the proof only for Model I and for the MZGLS

� (�) test, the proof for the other Model
and tests follows analogously. We =rst have

T−1ỹ2T = T−1{yT − ( ̂1 + !̂1T + !̂2(T − T�))}2

= T−1{uT − [( ̂1 −  1) + (!̂1 − !1)T + (!̂2 − !2)(T − T�)]}2:
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After some algebra, we obtain: T−1u2T ⇒ �2Wc(1)2; 2T−1uT ( ̂1 −  1) ⇒ 0,

2T−1uT (!̂1 − !1)T ⇒ 2�2b3Wc(1);

2T−1uT (!̂2 − !2)(T − T�) ⇒ 2�2b4Wc(1)(1− �);

2T−1( ̂1 −  1)(!̂1 − !1)T ⇒ 0;

T−1(!̂1 − !1)2T 2 ⇒ �2b23;

2T−1( ̂1 −  1)(!̂2 − !2)(T − T�) ⇒ 0;

2T−1(!̂1 − !1)T (!̂2 − !2)(T − T�) ⇒ 2�2b3b4(1− �);

T−1(!̂2 − !2)2(T − T�)2 ⇒ �2b24(1− �)2:

Using these results, we have

T−1ỹ2T ⇒ �2{V (1)
c Nc (1; �)

2 − 2V (2)
c Nc (1; �)}; (A.3)

where V (1)
c Nc (1; �) =Wc(1)− b3, and

V (2)
c Nc (1; �) = b4(1− �)[Wc(1)− b3 − (1=2)(1− �)b4]:

Consider now the term 2T−2 ∑T
t=1 ỹ2t , de=ned by

2T−2
T∑

t=1

ỹ2t = 2T−2
T∑

t=1

{yt − [ ̂1 + !̂1t + !̂21(t ¿T�)(t − T�)]}2

= 2T−2
T∑

t=1

{ut − [( ̂1 −  1) + (!̂1 − !1)t

+(!̂2 − !2)1(t ¿T�)(t − T�)]}2:
After some algebra, we obtain

2T−2
T∑

t=1

u2t ⇒ 2�2
∫ 1

0
Wc(r)2 dr;

4T−2( ̂1 −  1)
T∑

t=1

ut ⇒ 0;

4T−2(!̂1 − !1)
T∑

t=1

tut ⇒ 4�2
∫ 1

0
rb3Wc(r) dr;

4T−2(!̂2 − !2)
T∑

t=1

1(t ¿T�)(t − T�)ut ⇒ 4�2
∫ 1

�
b4Wc(r)(r − �) dr;
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2T−1( ̂1 −  1)2 ⇒ 0;

4T−2( ̂1 −  1)(!̂1 − !1)
T∑

t=1

t ⇒ 0;

2T−2(!̂1 − !1)2
T∑

t=1

t2 ⇒ 2�2
∫ 1

0
b23r

2 dr;

4T−2( ̂1 −  1)(!̂2 − !2)
T∑

t=1

1(t ¿T�)(t − T�) ⇒ 0;

4T−2(!̂1 − !1)(!̂2 − !2)
T∑

t=1

t1(t ¿T�)(t − T�) ⇒ 4�2
∫ 1

�
b3b4r(r − �) dr;

2T−2(!̂2 − !2)2
T∑

t=1

1(t ¿T�)(t − T�)2 ⇒ 2�2
∫ 1

�
b24(r − �)2 dr:

Using these results we have

2T−2
T∑

t=1

ỹ2t ⇒ 2�2
{∫ 1

0
V (1)
c Nc (r; �)

2 dr − 2
∫ 1

�
V (2)
c Nc (r; �) dr

}
: (A.4)

Using (A.3), (A.4) and the fact that s2 is a consistent estimate of �2, the proof is
complete.

Proof of Theorem 2. We =rst give the proof for Model I. De=ning

MT (c; Nc; �) = (u�′z�)(z�′z�)−1(z�′u�);

we have S( N�; �)=u N�′u N� −MT (c; Nc; �) and S(1)=u1′u1−MT (c; 0; �). Using the fact that

u N�
t = vt + T−1(c − Nc)ut−1

for t = 2; : : : ; T and u N�
1 = v1, we have

s2PGLS
T (c; Nc; �) =MT (c; 0; �)−MT (c; Nc; �)− 2 NcT−1

T∑
t=2

ut−1vt

+( Nc2 − 2 Ncc)T−2
T∑

t=2

u2t−1 − cT−1u1′u1 + op(1): (A.5)

Note that T−1 ∑T
t=2 ut−1vt ⇒ �2

∫ 1
0 Wc(r) dW (r) and T−2 ∑T

t=2 u2t−1 ⇒ �2
∫ 1
0

Wc(r)2 dr. Consider now the limit of MT (c; Nc; �). Using the scaling matrix DT =
diag(1; T−1=2; T−1=2), we have MT (c; Nc; �) = (u�′z�DT )(DTz�′z�DT )−1(DTz�′u�). The
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=rst term is given by

DTu�′z� =




v1 + T−1(c − Nc)u0 − NcT−1
T∑

t=2

[vt + (c − Nc)T−1ut−1]

T−1=2
T∑

t=2

(vt + (c − Nc)T−1ut−1)(−T−1 Nct + 1) + op(1)

T−1=2
T∑

t=TB+1

(vt + (c − Nc)T−1ut−1)(−T−1 Nct + 1 + � Nc)




and its limit is

�




v1=�

W (1) + (c − Nc)
∫ 1

0
Wc(r) dr

− Nc
∫ 1

0
r dW (r)− (c − Nc) Nc

∫ 1

0
rWc(r) dr

(1 + � Nc)

(
[W (1)−W (�)] + (c − Nc)

∫ 1

�
Wc(r) dr

)

− Nc
∫ 1

�
r dW (r)− (c − Nc) Nc

∫ 1

�
rWc(r) dr




:

The term DTz�′z�DT is given by




1 +
T∑

t=2

(− Nc=T )2 T−1=2

[
1 +

T∑
t=2

(− Nc=T )(− Nct=T + 1)

]

T−1=2

[
T∑

t=TB+1

(− Nc=T )(− Nct=T + 1 + � Nc)

]

T−1

[
1 +

T∑
t=2

(− Nct=T + 1)2
]

T−1
T∑

t=TB+1

(− Nct=T + 1)(− Nct=T + 1 + � Nc)

T−1
T∑

t=TB+1

(− Nct=T + 1 + � Nc)2
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and its limit is

1 0 0

Nc2=3− Nc + 1 (1− �)(1− Nc) + Nc2(2 + �3 − 3�)=6

Nc2(1− �3)=3− Nc(1− �2)(1 + � Nc) + (1− �)(1 + � Nc)2


 :

Simple algebra shows that MT (c; Nc; �) ⇒ v21+�2M (c; Nc; �) and the result of the theorem
follows using (A.5). The proof for Model II is entirely analogous and, hence, omitted.
The result stated in (16) follows using the fact that S( N�; �)= u N�′u N� −MT (c; Nc; �) which
depends on � only through MT (c; Nc; �) which enters with a negative sign, hence taking
the supremum instead of the in=mum.
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